Use of Data Mining in Scheduler Optimization
نویسندگان
چکیده
The operating system’s role in a computer system is to manage the various resources. One of these resources is the CPU (Central Processing Unit). It is managed by a component of the operating system called the CPU scheduler. Schedulers are optimized for typical workloads expected to run on the platform. However, a single scheduler may not be appropriate for all workloads. That is, a scheduler may schedule a workload such that the completion time is minimized, but when another type of workload is run on the platform, scheduling and therefore completion time will not be optimal; a different scheduling algorithm, or a different set of parameters, may work better. Several approaches to solving this problem have been proposed. The objective of this survey is to summarize the approaches based on data mining, which are available in the literature. In addition to solutions that can be directly utilized for solving this problem, we are interested in data mining research in related areas that have potential for use in operating system scheduling. We also explain general technical issues involved in scheduling in modern computers, including parallel scheduling issues related to multi-core CPUs. We propose a taxonomy that classifies the scheduling approaches we discuss into different categories.
منابع مشابه
Use of artificial intelligence techniques to predict distribution of heavy metals in groundwater of Lakan lead-zinc mine in Iran
Determining the distribution of heavy metals in groundwater is important in developing appropriate management strategies at mine sites. In this paper, the application of artificial intelligence (AI) methods to data analysis,namely artificial neural network (ANN), hybrid ANN with biogeography-based optimization (ANN-BBO), and multi-output adaptive neural fuzzy inference system (MANFIS) to estima...
متن کاملPrediction and Diagnosis of Diabetes Mellitus using a Water Wave Optimization Algorithm
Data mining is an appropriate way to discover information and hidden patterns in large amounts of data, where the hidden patterns cannot be easily discovered in normal ways. One of the most interesting applications of data mining is the discovery of diseases and disease patterns through investigating patients' records. Early diagnosis of diabetes can reduce the effects of this devastating disea...
متن کاملUsing data mining to ®nd patterns in genetic algorithm solutions to a job shop schedule
This paper presents a novel use of data mining algorithms for the extraction of knowledge from a large set of job shop schedules. The purposes of this work is to apply data mining methodologies to explore the patterns in data generated by a genetic algorithm performing a scheduling operation and to develop a rule set scheduler which approximates the genetic algorithm's scheduler. Genetic algori...
متن کاملApplication of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)
Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...
متن کاملData mining for decision making in engineering optimal design
Often in modeling the engineering optimization design problems, the value of objective function(s) is not clearly defined in terms of design variables. Instead it is obtained by some numerical analysis such as FE structural analysis, fluid mechanic analysis, and thermodynamic analysis, etc. Yet, the numerical analyses are considerably time consuming to obtain the final value of objective functi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1011.1735 شماره
صفحات -
تاریخ انتشار 2010